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1 Preface

The report shows my learning and exploration in the field of PatchMatch MVS during the
course DDA2082 Independent Study II. Since the course emphasizes more than just scientific
research, this report is not strictly organized as an academic paper. Before presenting the
proposed method, I first introduce my understanding of the basic ideas of standard Patch-
Match Stereo. If you are not familiar with PatchMatch Stereo, the first part of the report will
help a lot. Then, the proposed MVS method with Broad Adaptive Checkerboard Sampling
and Dynamic Multi-Hypothesis Joint View Selection is presented in the second part. Finally,
the third part shows the results of the proposed method in ETH3D dataset.

I am very grateful to Professor Sun Qilin for his help in my study and research process,

especially for giving me very useful suggestions on how to introduce my research.

2 Introduction to PatchMatch Stereo

2.1 Overview

PatchMatch Stereo (PMS) [Bleyer et al. 2011] is a binocular stereo matching algorithm article
published at the British Machine Vision Conference (BMVC) in 2011. The method is very
classic and the idea of slanted support windows breaks the shackles of traditional fixed window
local matching thinking. What’s even more valuable is that, like SGM, it has excellent data

generalization capabilities and can achieve good results for most data.

Although PatchMatch Stereo here is a binocular stereo algorithm instead of multi-view stereo
(MVS) algorithm, it is the basis of PatchMatch-based MVS and reveals the core idea of
using PatchMatch to estimate disparity and depth, and then obtain the 3D reconstruction.

Therefore, it is necessary to first introduce PatchMatch Stereo in this report.

2.2 Slanted Support Windows

Fronto-Parallel Windows. Before introducing Slanted support windows, it is very neces-

sary to introduce another fixed window model: Fronto-parallel windows.

Fronto-parallel windows is a very classic window model, which refers to windows directly in
front of the camera that are parallel to the image plane after epipolar correction, and are also
perpendicular to the Z-axis of the camera coordinate system of each camera after correction.

The characteristics of this window are as follows:

e The projection lengths of any line segments in the window on the left and right images

(epipolar line image pairs) are equal.

e All spatial points in the window have the same depth. From D=bf/d, it can be seen




that the disparity of the projection point of the spatial point on the image is also the

Same.

These two characteristics are very friendly to rectangular window matching, so that all pixels
in the window where the left and right images are centered on a point pair with the same
name can correspond one-to-one with the same name, and all pixels in the window have the
same unique disparity, so if If the texture conditions are good, there is even no need for cost
aggregation, and good results can be obtained through simple local similarity algorithms such

as the correlation coefficient method.

But the problem is that such a window is too ideal, and it is difficult to find such a scene
in practical applications. More often, there may be several fronto-parallel windows in the
scene, or there may be none. But fortunately, this window provides us with good research
ideas. Many algorithms are further optimized based on this window model, such as SGM
[Hirschmuller 2005] and AD-Census [Mei et al. 2011]. They calculate the initial cost value
based on Fronto-parallel windows, and then obtain the cost Aggregation, optimizing the cost,

and getting very good results.

At the same time, some researchers have begun to find other ways to find more reasonable
window models. In 2011, the PatchMatch Stereo algorithm based on Slanted support windows

came into being.

Slanted Support Windows.
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Figure 1: The illustration of Fronto-parallel windows and slanted support windows in [Bleyer
et al. 2011], which shows the support regions (in 1D). The points of green surface shall be
reconstructed. Support regions are show by red bars. (a) Fronto-parallel windows at integer
disparities as used in standard methods. (b) Slanted support windows. The 3D plane is

estimated at each point.

According to Fig.1 (a), we can see that P conforms to the assumption of Fronto-parallel win-
dows, in which the local surface is Fronto-parallel and has the same disparity value. However,
R and S do not conform. The surfaces are both inclined. R is an inclined plane and S is
Inclined surface. According to Fig.1 (b), We can observe the changes in the R and S windows.
The windows under the assumption of Fronto-parallel windows are parallel to the disparity
dimension and do not fit the surface trend, while slanted support windows fit the surface very

well. Slanted support windows should dynamically change with the orientation of the surface.

The core idea of PatchMatch Stereo is to find a dynamic disparity plane for all pixels. Consider




pixel p with disparity d,, the disparity plane of p is:

dp:a.fpp$+b.fppy+c.fp (1)

where ay,, by, cf

. are parameters of the disparity plane. Therefore, the disparity estima-

tion problem is converted into a plane estimation problem. Stereo matching is to find the
parameters of the optimal plane for each pixel, that is, to find the plane with the smallest

aggregation cost for each pixel:

pm— 1 2
fp = argminm(p, f) (2)
where F' is a set of planes, m(p, f) is the aggregation cost of p with disparity plane f:

m(p, f) =Y w(p,q) - p(q,q — (ag,pe +bs,py +cy,)) (3)
qeW),

where W, is a square window centered at p, w(p,q) is an adaptive weight to solve edge-
fattening problem. In PMS, w(p, q) is obtained by computing the possibility that p and q has

the same plane, determining with the differences of colors:

_lIp—Tqll

w(p,q) =€ 7 (4)
where v is a hyper-parameter, ||I, — I,|| is the L1-distance in RGB space between p and q.

In the formula of m(p, f), there is an important function p, which is to compute the dis-
similarity of two pixels. For left image pixel q, its disparity is d, = arq, + bsrq, + ¢y, the

corresponding pixel in the right image ¢’ = ¢ — d,, the dissimilarity is:

\Teol) + - min(||AL; — Al

p(a,q) = (1 —a) - min(||l; — Iy > Torad) ()

where 7., and 74,44 are truncate parameters to achieve more robust computation in occlusion

areas.

However, how to solve the optimization problem? Searching in the unbounded set F' is not

reasonable. Therefore, the next part will introduce the method to solve this problem.

2.3 Disparity Estimation Based on PatchMatch

The basic idea of PatchMatch is: in images, the disparity planes of all pixels in a pixel block
of a certain size can be approximated as the same. This also constitutes the basic idea of
PMS, that is, the image can be regarded as multiple pixel blocks, and each pixel block has
an approximate disparity plane. The goal of the algorithm is to find all the disparity planes

of the image.
The procedures are as follows:
1. Random Initialization. This is the first step for PMS to find a disparity plane, that

is, to initialize a random disparity plane for each pixel. PMS hopes that through this

step, at least 1 pixel can be randomly assigned to the correct plane.




For the initialization, PMS does not randomly assign values to the three plane paramet-
ers ay, by, cy. The disadvantage of this way that it cannot give a range constraint to the
plane. Therefore, the method in PMS is that: Give each pixel a random disparity value
2o within the disparity range, and then randomly assign an unit vector 7 = (n,,n,,n.)

as the normal. Then, ay, bs, c; can be computed:

ap=——= (6)
n
by = ——% 7
f o (7)
Ny To + NyYo + Nz 20
cr = 7‘1: (8)

2. Disparity Propagation. The basic idea is to propagate a small number of correct dis-
parity planes among all random disparity planes to other pixels. Here I only introduced
Spatial Propagation which is also used in PatchMatch MVS.

Spatial Propagation. The idea behind spatial propagation is that spatially adjacent
pixels are most likely to have similar disparity planes. Therefore, consider pixel p with
plane f,, check whether the disparity plane f, of pixel ¢ in its neighborhood is more
suitable for p. That is, to check m(p, f;) < m(p, f,). If so, then treat f, as the new
disparity plane of p. In even-numbered iterations, q is the left and upper pixels of p; in

odd-numbered iterations, q is the right and lower pixels of p.

Figure 2: The upper part is the results of disparity propagation, the lower part is the results

of random initialization.

3. Plane Refinement. The objective of plane refinement is to optimize the parameters

of f, and further reduce the aggregation cost m(p, f,). PMS sets two parameters AT**




and A7"*®. Then, randomly choose a value A, in [-AT* AT*] and set 2, = 2o + A,
and choose A, in [~A™a A™az] et p' = u(7i + A,), u means computing the unit
vector. Therefore, we get a new plane f,/, if m(p, f,;) < m(p, f,), then treat f, as the

new plane of p.

The plane refinement is also perform iteratively. After every iteration, the parameters

Agz;(m: and A% will decrease.

Therefore, we can solve the plane optimization problem without the need of brute force enu-
meration. In fact, through the propagation method, in many cases we only need 3 iterations

to obtain a good disparity map.

3 MYVS with Broad Adaptive Checkerboard Sampling and
Dynamic Multi-Hypothesis Joint View Selection

After understanding the basic idea of PatchMatch, I started to learn some state-of-the-art
PatchMatch MVS algorithms, and aimed to make improvements based on these algorithms.
After exploration, I had ideas for improving an PatchMatch MVS method called ACMH [Xu
and Tao 2019], which is published at CVPR 2019. My improvements are focused on two parts:
the pixel hypothesis sampling before disparity propagation, and the view selection. These
parts are named as Broad Checkerboard Sampling and Dynamic Multi-Hypothesis
Joint View Selection, which is introduced in the following sections. Other parts of the entire
MVS algorithm such as random initialization, refinement, multi-scale geometric consistency,
etc. are completely consistent with ACMH. For completeness, I will also introduce them in

the following sections.

3.1 Overview

The task of the MVS algorithm can be described as: Given a set of input images I = {[;|i =
1--- N} with known calibrated camera parameters P = {F;|i = 1--- N}, our goal is to
estimate depth maps D = {D;|i = 1--- N} for all images and fuse them into a 3D point cloud.
More specifically, we just need to estimate the depth map of reference image I,.y sequentially

selected from I with the guidance of source images I c( — Liey).

3.2 Structured Region Information

Structured region information means that pixels within a relatively large region can be ap-

proximately be modeled by the same 3D plane.




3.2.1 Random Initialization

The initialization for ACMH is very similar to the previously introduced method. First,
randomly generate a hypothesis including depth (or disparity) and normal to build a plane
for each pixel in the reference image I,.r. For each hypothesis, a matching cost is computed
from each of N — 1 source images. And then, the top K best matching costs within the N — 1

costs are aggregated to form the initial aggregation cost of the pixel.

3.2.2 Broad Checkerboard Sampling
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Figure 3: Propagation scheme showed in [Xu and Tao 2019]. (a) Sequential propagation. (b)
Symmetric checkerboard propagation. (c) Adaptive checkerboard propagation. The light red
areas in (c) show sampling regions. The solid yellow circles in (b) and (c¢) show the sampled

points.

During the introduction of PatchMatch Stereo, we’ve talked about a propagation scheme
called sequential propagation, which is also used in a well-known MVS method, COLMAP
[Schénberger et al. 2016]. However, this method is inefficient and time-consuming. There-
fore, [Galliani et al. 2015] proposed to partition the pixels of I,.; into red-black grids of a
checkerboard. This pattern allows us to simultaneously update the hypotheses of black pixels
using red pixels and vice versa. Besides, this method can make a full use of GPU, which
can largely speed up the algorithm. However, in [Galliani et al. 2015], the pixel hypotheses
used to update the considered pixel are eight fixed points, which limits the propagation of
good planes. Therefore, ACMH proposed to sample eight points from four V-shaped areas
and four long strip areas based on the aggregation matching costs. However, this method is
also very handcrafted in the construction of the eight areas and also missed some pixels in

the neighborhood of the considered pixel, which still limits the propagation of good planes.
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Figure 4: Propagation scheme of Broad Checkerboard Sampling. Blue line shows the window

and the four areas. The solid yellow circles show the sampled points.

Therefore, I propose a new hypothesis sampling method called Broad Checkerboard Sampling.
Specifically, for each considered black/red pixel 4, I construct a squared window which is center
at i, and divided the window into four areas. During the sampling, all the red/black pixels
in the window are considers. Finally, in each area, two best hypotheses are selected for later
propagation. This method enlarges the number of considered pixels during the sampling and
helps a good plane of a local shared region to spread further. Besides, this method helps deal
with low-texture areas. This is because during random initialization, it is very likely to obtain
a good hypothesis in the low-texture areas. However, when using sequential propagation and
the adaptive checkerboard propagation, the sampling and propagation is not thorough, and
it is very difficult for the good hypothesis to propagate to other pixels. When using the broad
checkerboard sampling and propagation method, the good hypothesis is more likely to be
propagate to other pixels. In addition, when applying the proposed method, we can use less

iterations to get better results.

3.2.3 Dynamic Multi-Hypothesis Joint View Selection

To obtain a robust multi-view matching cost for each pixel, ACMH further leverages these the
obtained eight structured hypotheses to infer the weight of every neighboring views. Firstly,

build a matching costs matrix for each pixel p:

mi1 Mi2 -+ M1 N-1
Moy M2 -+ Mz N-1

M=| | , . 9)
mgi1 Mga -+ MgN-1

3

where m, ; is the matching cost for the i-th hypothesis h; scored by the j-th view I,.

After that, ACMH uses a voting scheme to infer the weights of the source views with the
matching cost matrix. More specifically, ACMH sets a good matching cost bound and a bad
matching cost bound of matching costs, and for each source view, consider the number of
matching costs (totally 8 costs) that are good views and the number of bad views. Then, use

this information to refer the weight of each view. However, the method in ACMH uses fixed




bad matching bound. In fact, through propagation iterations, the matching costs are updated
to be smaller, so the bad matching bound should also be updated to be smaller. Therefore,
I proposed a view selection method called Dynamic Multi-Hypothesis Joint View Selection
based on the method used in ACMH.

Dynamic Multi-Hypothesis Joint View Selection.

The good matching cost bound is defined as:

t2

To(t) = Tg0 - € “9 (10)

where ¢ means the ¢-th iteration, 74 is the initial good matching cost threshold and «y is a

constant.

The bad matching cost bound is defined as:
t2
Tb(t) :’7'},0'67q (11)
where ¢t means the t-th iteration, 7, is the initial bad matching cost threshold and oy is a

constant.

For a specific view I;, there should exist n; matching costs satisfying: m, ; < 7,(t). Then,
define good matching cost set Sgooq(j). Also, there should be less than n, matching costs
satisfying: m;; > 7,(t). A view simultaneously satisfying the above conditions will be in-
corporated into the current view selection set S; in the ¢-th iteration. S; may contain some
unstable views because of noise, viewing points, etc. To evaluate the importance of each

selected view, the confidence of a matching cost is computed as follows:

m,
C(mm) =e 282 (12)
where [ is a constant. This makes good views more discriminative. The weight of each
selected view can be defined as:
1
good mi‘jesgood(j)
Suppose the most important view v;_; in iteration ¢ — 1 shall continue to have influence on

the view selection of current iteration . Thus, we obtain:

I([; =v_ 1) -w(l;), ifl, €S
w,(Ij): ( (_] V1) + 1) w(y) 1L 4y t (14)
0.2-1 (Ij = ’Utfl) s else.
This modification can make the view selection more robust.
S W (I)  may
mphoto(pa h’l) = = ! ! (15)

S w (1)

The current best estimate for pixel p is updated by the hypothesis with the minimum multi-

view aggregated cost.




3.2.4 Refinement

After each red-black iteration, a refinement step is applied to enrich the diversity of solution
space, which is similar to the previous introduced method. That is, make some changes to
depth and normal to form new hypotheses, and compare them with the matching costs of
the original hypothesis. At the end, a median filter of size 5 x 5 is applied to our final depth
maps. In addition, we can also add the Multi-Scale Geometric Consistency module in [Xu

and Tao 2019] to get better results in low-texture areas.

3.3 Fusion

After obtaining all depth maps, we sequentially view each image as a reference image, convert
its depth map into 3D points in world coordinates, and project them to its adjacent views to
obtain corresponding matches. We define a consistent match that satisfies the relative depth
difference ¢ < 0.01, the angle between normals # < 30° and the reprojection error ¢ < 2
as in [Schonberger et al. 2016]. If there exist more than 2 satisfied neighboring views, the
depth estimate will be accept. Finally, the 3D points corresponding to these consistent depth

estimates and the normal estimates are averaged into a unified 3D point.

4 Results

I tested the proposed method in a MVS dataset, ETH3D benchmark [Schops et al. 2017]. In

the multi-hypothesis joint view selection scheme:
{740, Tv0, g, p, B,m1,n2} = {0.8,1.2,90,120,0.3, 2, 3}

From both the depth maps and the reconstructed point clouds, we can see that the pro-
posed method presents very obvious improvements in low texture areas and produces the

best reconstruction results. At the same time, our approach does not sacrifice in details.




(d) Ours without MM (e) ACMM (f) Ours with MM

Figure 5: Depth map comparisons between different algorithms on ETH3D pipes dataset.

(d) Ours without MM (e) ACMM (f) Ours with MM

Figure 6: Point cloud comparisons between different algorithms on ETH3D pipes dataset.
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